

Eighth Semester B.E. Degree Examination, Aug./Sept.2020 Experimental Stress Analysis

Time: 3 hrs.

Max. Marks: 80

Note: i) For Regular Students: Answer any FIVE full questions irrespective of modules. ii) For Arrear Students : Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1	a.	With the help of neat sketch, explain generalized measurement system.	(06 Marks)
	о. с.	What are the functions of Backing Material?	(06 Marks) (04 Marks)
2	a. b.	Derive the equation for sensitivity of the potentiometer circuit. Define strain sensitivity of metal and derive the equation for gauge factor.	(08 Marks) (08 Marks)
_	Module-2		
3	a.	Sketch the different configurations of the strain rosette.	(06 Marks)
	b.	The apparent strains measured by a rectangular rosette are $Q_a = -1000 \ \mu/cm$, $Q_b = Q_c = 200 \ \mu/cm$ with transverse sensitivity of K = 0.01. The Poisson's ratio of the on which rosette mounted is 0.3. Calculate principal stresses and strate $E = 200 \text{ GPa}$ and $\gamma_0 = 0.285$.	^a 327 μ/cm, he material ains. Take (10 Marks)
4	я	Explain the corrections for transverse strain effects	(06 Marks)
7	b.	A delta rosette vields the following strain indications $\epsilon_{0} = -845$	ucm/cm
		$\epsilon_b = 1220 \text{ µcm/cm}, \epsilon_c = 710 \text{ µcm/cm}.$ Calculate maximum principal stresses a	and strains.
		principal strain direction and shear stress, $\gamma = 0.285$, $e = 2 \times 10^6$ kg/cm ² .	(10 Marks)
_		Module-3	
5	a.	Derive stress optic law.	(06 Marks)
	b .	Derive equation for intensity of light coming out of plane polariscope and explain of localinia and local remotion Eringer	1 Iormation
		of isochine and isochiomatic ringes.	(10 Marks)
6	a.	Elaborate the shear difference method of stress separation.	(08 Marks)
	b.	What are the ideal properties of 2D photoelastic model materials?	(08 Marks)
7	9	With next sketch explain scattered light polariscope	(Al Marks)
1	a. h	Explain stress freezing method of three dimensional photoelasticity	(08 Marks)
	υ.	Explain sitess neezing method of three dimensional photoenasterty.	(00 marks)
8	a.	Explain with neat sketch reflection polariscope.	(08 Marks)
	b.	Derive equation for Birefringence coating stresses.	(08 Marks)
Module-5			
9	a.	Elaborate the various crack patterns obtained in Brittle coating.	(08 Marks)
	b.	Explain the different crack detection methods used in Brittle coating method.	(08 Marks)
10	9	Describe the displacement approach for Maira Fringe analysis	(AQ Manka)
10	a. h	Explain the Moire Fringes produces by mechanical interference	(00 Marks)
	υ.	Explain the Wone I finges produces by meenanear mericience.	(00 mains)
		* * * * *	